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We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with
localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry
reveals the existence of several characteristic lengths separating different length-scale regimes of roughness.
We determine the scaling behavior of these lengths as a function of the velocity, temperature, driving force, and
transverse periodicity. A dynamical roughness diagram is thus obtained which contains, at small length scales,
the critical and fast-flow regimes typical of the random-manifold �or domain wall� depinning, and at large
length scales, the critical and fast-flow regimes typical of the random-periodic �or charge-density wave�
depinning. From the study of the equilibrium geometry we are also able to infer the roughness diagram in the
creep regime, extending the depinning roughness diagram below threshold. Our results are relevant for under-
standing the geometry at depinning of arrays of elastically coupled thin manifolds in a disordered medium such
as driven particle chains or vortex-line planar arrays. They also allow to properly control the effect of trans-
verse periodic boundary conditions in large-scale simulations of driven disordered interfaces.
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I. INTRODUCTION

The dynamics of elastic manifolds in disordered media
have been widely studied in relation with the physical prop-
erties of many systems. Magnetic1–4 or ferroelectric5–7 do-
main walls, contact lines of liquid menisci,8,9 fluid invasion
fronts in porous media,10,11 and fractures12–16 can be modeled
as elastic interfaces or lines. Such lines would be flat if they
were not under the usually unavoidable action of quenched
disorder. Periodic systems such as charge-density waves
�CDW�,17 vortex lattices in type-II superconductors18–20 or
Wigner crystals21 can be also modeled as elastic manifolds
embedded in random environments. This manifold is de-
scribed by the displacements around the perfect periodic lat-
tice that would exist in the absence of disorder. No matter
how weak is the disorder,22 in all these systems the compe-
tition between elasticity and disorder gives rise to rough
structures and complex collective pinning phenomena with
interesting universal features.

Of special interest is the response of this kind of systems
to an external uniform field, able to drive the elastic manifold
in a given direction. Concrete examples are applied magnetic
fields on magnetic domain walls, applied electrical fields on
ferroelectric domain walls, fluid pressure on contact lines,
tension on fractures, electrical currents on vortex lattices in
superconductors, and electrical fields on charge density
waves and Wigner crystals. Indeed, such a probe would be
rather trivial if not because of the presence of quenched im-
purities: disorder breaks the translation symmetry �though
not in a statistical sense�, making the otherwise uniform dis-
placement of the manifold a complicated process involving
many degrees of freedom. Whether the elastic bonds of the
manifold break or support the tearing produced by the disor-
der, the resulting flow can be plastic or elastic respectively,
and in both cases a rich disorder-induced out-of-equilibrium
phenomena can emerge. To understand these phenomena it
was shown to be more convenient to start by restricting the
study to the more tractable elastic flow case.

Elastic depinning is one of the most prominent and better
understood examples of collective pinning dynamic
phenomena.23,24 At zero temperature the external field must
overcome a finite threshold fc in order to force the pinned
system to acquire a finite steady-state velocity v. Below the
depinning threshold a finite velocity is only possible at a
finite temperature by thermal activation due to the presence
of many metastable states separated by energetic barriers.
These barriers tend to diverge when decreasing the drive in
the so-called creep regime,25,26 strongly impeding the motion
at low driving forces, and tend to vanish at fc giving place to
a thermal rounding27 of the depinning transition. These col-
lective transport phenomena are experimentally relevant
since a finite velocity in this kind of systems corresponds to
physical quantities �magnetization, or polarization for do-
main walls, voltage for superconductors, current for CDW�
that can be readily measured.

From the statistical physics point of view the most re-
markable feature of the far from equilibrium steady-state mo-
tion near the depinning threshold fc at zero temperature is the
existence of a well-defined nontrivial critical behavior. Just
above the threshold the motion is jerky, characterized by
forwardly moving avalanches of a typical size ���f − fc��

and width w��� produced at a typical rate ���z, yielding a
mean velocity v��f − fc��, with �=��z−��. � ,z ,� are non-
trivial characteristic exponents. These observations led to the
fruitful analogy of the depinning transition with standard
equilibrium critical phenomena, with v playing the role of
the order parameter and f the role of the control parameter.28

This analogy motivated an outburst of analytical and numeri-
cal work devoted to determine the value of critical exponents
for different universality classes,23,29–43 and to develop pow-
erful analytical44–46 and numerical40,47–50 methods to obtain
them. From the numerical viewpoint such a study requires a
precise determination of the critical threshold fc.

40

For standard equilibrium phase transitions the low-
temperature phase can be characterized by equilibrium cor-
relation lengths separating the critical-looking short length
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scales from the low-temperature fixed-point dominated large
length scales. For the depinning transition it was shown that
� also admits an analogous purely geometric interpretation as
a crossover length in the average steady-state roughness of
the �ordered� moving v�0 phase. The length � separates the
regime of critical roughness at short length scales �i.e., with
a roughness exponent of the critical configuration at fc� from
the fast-flow roughness observed at large length scales �i.e.,
with a roughness exponent identical to the strongly driven
interface, f � fc�.33,42,50 The steady-state geometry thus con-
tains information of the velocity and there is no need to
observe the transient correlated process of an avalanche.
More recently, however, the analysis of the low-temperature
averaged steady-state geometry has shown that no divergent
steady-state correlation length scale exists approaching the
threshold from below, thus breaking the naive analogy with
standard phase transitions, where two divergent length scales
are expected above and below the critical point.49,50

Elastic depinning universality classes were shown to de-
pend on the dimension of the embedding space D, the dimen-
sion d of the manifold, or the number N=D−d of displace-
ment components of the manifold, the nature of the elastic
interactions,39,40,51,52 the anisotropy of the medium53 and the
nature of microscopic disorder correlations.33,54 Considering
for simplicity the case of d-dimensional directed manifolds
with N=1 living in an isotropic uncorrelated disordered me-
dium it is convenient to distinguish between two prominent
groups, according to the correlations of the effective pinning
force Fp�u ,r�. This pinning force acts on the manifold dis-
placement field u�r�, which measures the distance between
the distorted and the perfectly flat manifold at the labeling
point r. On one hand the pinning force on interfaces such as
domain walls or contact lines in random potentials usually
display short-range correlations reflecting the fact that the
interface sees a completely different disorder after shifting it
a distance bigger than a certain characteristic finite width
rf =max�w ,r0�, where w is the domain-wall width and r0 the
assumed finite correlation length of the disorder potential.
We use random-manifold �RM� to denote this group, and we
do not make distinction between the random-bond �RB� and
random-field �RF� type of disorder since at depinning, unlike
statics, they are known to merge into a single class.33,48 In-
terfaces in periodic potentials or periodic condensates, such
as charge density waves or periodic chains of elastically
coupled objects, on the other hand display an effective pin-
ning force with periodic correlations with a period M repre-
senting the period of microscopic potential in the first case
and the lattice spacing in the second case. We use random-
periodic �RP� to denote this group.

For short-range correlated isotropic disorder, the N=1
RM and RP classes have been traditionally studied, both nu-
merically and analytically, using two paradigmatic models of
disorder. While for modeling the large-scale dynamic behav-
ior of a nonperiodic system it is enough to use any uncorre-
lated potential with range rf, for modeling the periodic sys-
tem the random-phase cosine potential have been
traditionally chosen, thus forcing M �rf. Although this is a
good approximation for charge density waves �cf.
Fukuyama-Lee-Rice model55,56�, this kind of modeling does
not permit however to study the interesting situation that can

appear in different periodic systems for which the periodicity
is much larger than the short-range correlation length of the
disorder correlator, i.e., rf �M. Indeed, when the autocorre-
lation of the pinning force is periodic and displays sharply
localized peaks this physical situation, mostly analyzed for
two component �N=2� displacement fields, was shown to be
relevant for describing the statics of Wigner crystals21,57 or
vortex lattices,58,59 where the lattice spacing a0 can be made
much larger than the vortex core size or coherence length �
�cyclotron radius for Wigner crystals� by simply tuning an
external magnetic field. In these cases the length-scale sepa-
ration is responsible for the so-called RM regime of rough-
ness. This regime occurs at intermediate length scales, before
the system asymptotically reaches the so-called Bragg-glass
or RP regime. Because the intermediate RM regime can span
a wide range of lengths,60,61 it can affect the static and dy-
namic properties of this kind of systems and thus can be
experimentally observed. We can therefore expect additional
geometrical crossovers around the depinning transition in
these systems. From a numerical point of view, the effect of
a periodicity M �rf in the critical depinning force distribu-
tion has been already analyzed in Ref. 62.

Here we present a study of the finite velocity dynamics of
a simple RP system which includes localized periodic corre-
lation peaks with controlled periodicity M, yielding an inter-
esting multiscale behavior around depinning. Our main result
is a geometrical dynamical roughness diagram which con-
tains, at small length scales, the critical and fast-flow regimes
typical of the RM �or “magnetic domain wall”� depinning,
and at large length scales, the critical and fast-flow regimes
typical of the RP �or “charge-density wave”� depinning. We
argue that our results are qualitatively valid for the family of
one-component periodic systems with localized correlations
peaks, such as chains of elastically coupled thin interfaces.
We compare, in particular, a driven chain of interacting par-
ticles in a one-dimensional disordered potential with an elas-
tic line in disordered potential with periodic correlations at a
larger scale. Our results are particularly relevant for properly
controlling and interpreting the effect of periodic boundary
conditions in large-scale simulations of driven interfaces.

Outline of the paper

The paper is organized as follows. In Sec. II we describe
the general class of random periodic systems with localized
periodic correlation peaks for which we argue our general
results apply. Then, Sec. III presents the general properties of
the structure factor, which will be used to analyze the geom-
etry of rough interfaces. The main result of this work is the
dynamical roughness diagram presented in Sec. IV based on
scaling arguments. Section V gives the details of the per-
formed numerical simulations that will be presented in Sec.
VI and give support to the proposed dynamical roughness
diagram. Then, in Sec. VII we will present a discussion of
the RM-RP crossover, the relation between the elastic string
and particle chain models, the extensions of the roughness
diagram to the creep regime, and the implications of our
results to numerical simulations with periodic boundary con-
ditions. Finally, Sec. VIII presents the conclusions of the
present work.
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II. RANDOM PERIODIC SYSTEMS WITH LOCALIZED
CORRELATION PEAKS

As a model for a random periodic system with well-
separated length scales rf and M we focus our study on di-
rected elastic interfaces described by a one component dis-
placement field u�r , t� with internal dimension d, r�Rd,
with D=d+1 the dimension of the embedding space, which
satisfy an overdamped equation of motion

	�tu�r,t� = c�2u�r,t� + Fp�u,r� + f + 
�r,t� , �1�

where 	 is the friction coefficient, c the elastic constant, and
the uniform external force is given by f . The thermal fluc-
tuations satisfy

�
�r,t�� = 0, �2�

�
�r,t�
�r�,t��� = 2	T��t − t����r − r�� , �3�

where the brackets correspond to thermal average. Therefore
the system asymptotically relaxes to the canonical thermal
equilibrium at temperature T in the absence of the driving
force f . The pinning forces are characterized by sample-to-
sample fluctuations given by

Fp�u,r�Fp�u�,r�� = ��u − u����r − r�� , �4�

where the overbar indicates average over disorder realiza-
tions. In this paper we consider the case when the correlator
function ��u� is a periodic function with correlation peaks
localized in a range rf �M at the values u= pM with M the
periodicity and p any integer. We do not make a distinction
between the so-called random bond, where we must enforce
�du��u�=0 and the random-field cases �see e.g., Ref. 33�
since we are interested in the depinning transition where
these two different static universality classes merge into a
single one �in the creep regime, for f  fc and T�0 the dis-
tinction must be done however since the static properties can
affect the intermediate length-scale physics33,50�. In Fig. 1 we
schematically represent the shape of ��u�.

A periodic pinning force with fluctuations given by Eq.
�4� arises naturally in numerical simulations of interfaces in
random environments, when analyzing a system of trans-

verse size M with periodic boundary conditions. We will
exploit this fact to get most of our numerical results.

Interestingly, as we will show later, we find that the
roughness scaling for elastic lines in a random-periodic two-
dimensional potential with periodicity M in the direction of
displacement also describe a chain of elastically coupled par-
ticles in a one-dimensional nonperiodic random potential
with the lattice spacing given by M. We argue that this con-
nection is general, between a d-dimensional elastic manifold
in a random-periodic medium and a periodic chain of �d
−1�-dimensional coupled manifolds. The dynamics of a dis-
crete chain of d-dimensional coupled manifolds can be de-
scribed by

	�tun�r,t� = c̃�un+1�r,t� + un−1�r,t� − 2un�r,t�� + c�2un�r,t�

+ Gp�nM + un,r� + F + 
n�r,t� , �5�

where un describes the displacements of each manifold
around the perfect position nM in the chain, c̃ is a compres-
sion elastic constant, and G�u ,r� an uncorrelated pinning
force which is the same, independently of n, with a nonpe-
riodic short-range correlator of range rf. In this case, the
correlations of the thermal noise are given by
�
n�r , t�
m�r , t��=2	T�nm��r−r����t− t��. The connection
between the physics of Eq. �1� for d-dimensional manifolds
and Eq. �5� for d−1-dimensional manifolds is subtle since it
involves a nontrivial coarse graining in the direction of the
periodicity which can produce extra terms in the equation of
motion.52,58,59 This issue will be discussed in more detail
later. It is however plausible at this point that the resulting
pinning force would display, if distortions are locally smooth,
i.e., 	un+1−un	�M, well-developed periodic correlations
with a period M in the direction of the chain displacement
with correlation peaks localized in a range rf �M, as the
ones schematically shown in Fig. 1.

III. ROUGH GEOMETRY AROUND DEPINNING

We focus our study on the geometrical observables that
can be defined for the sliding manifold. The structure factor
Sq is a very convenient quantity to study the geometry of the
manifold at different length scales and to locate the different
crossovers.43,47,49,50,63,64 We define it as

S
q

= 
�� e
iq.r

u�r�dr�2 �6�

by choosing q=qx̂ in a particular direction x, corresponding
to the direction of one of the internal dimensions if the in-
terface is governed by Eq. �1�, and corresponding to the di-
rection of displacement �i.e., the direction of the chain� if it
is described by Eq. �5�.

The driven steady-state geometry at low temperatures is
governed by three reference states:49,50 the f =0 equilibrium
state, the f = fc and T=0 depinning critical state, and the fast-
flow state f →�. The particularity of these states is that
above a microscopic length they have different self-affine
geometries, i.e., the structure factor behaves as

∆
(u

)

u

M

rf

RB
RF

FIG. 1. �Color online� Schematic pinning force correlator for a
random periodic system with periodicity M and localized correla-
tion peaks with range rf. RB and RF stand for random-bond and
random-field correlations �see the text for details�.
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Sq � q−�d+2��, �7�

where the power-law behavior reflects the lack of a charac-
teristic length scale in these states and � is the characteristic
roughness exponent. The roughness exponents of the refer-
ence states are �EQ, �, and �FF, respectively. These exponents
can take different values in different universality classes.
While �EQ is different for the RB, RF, and RP universality
classes, � and �FF remain the same for RB and RF classes
and they change for the RP class. Since we are particularly
interested in distinguishing the depinning and fast-flow
roughness exponents of the RP class and the RM class, we
use a superindex “RP” in all the exponent to indicate when
the exponents belong to the RP case, and omit the superindex
for the RM class �see Table I�.

Furthermore, two important characteristic roughness ex-
ponents are the Larkin exponent �L and the thermal exponent
�TH, which are, in general, expected to appear at very small
length scales. The Larkin exponent is simply obtained by
doing a first-order perturbation expansion in the disorder,
thus replacing it by a random uncorrelated force. It yields
�L= �4−d� /2 for lengths smaller than the Larkin length lc,
above which the naive perturbation theory fails due to meta-
stability. The thermal roughness exponent �TH= �2−d� /2 is
defined as the one that appears in absence of disorder at finite
temperature and can be obtained exactly from the Edwards-
Wilkinson equation.65 Interestingly, we will show later that
both, �L and �TH reappear at large length scales in the dy-
namics of a RP system with localized correlation peaks:
�FF=�TH, �RP=�FF

RP=�L.
The steady-state geometry at small velocities can in gen-

eral be described by velocity- and temperature-dependent
crossover lengths separating different regimes of roughness.
The corresponding roughness exponents are however univer-
sal, velocity and temperature independent, and coincide with
one of the aforementioned exponents. For velocities just
above the RM depinning transition we have

Sq � � q−�d+2�� for q � 1/�
q−�d+2�FF� for q  1/�� �8�

allowing to define the characteristic length �. For small ve-
locities and vanishing temperatures � can be identified with a
velocity-dependent divergent correlation length ��v−�/�. At
f → fc

+ and zero temperature we have ���f − fc�−�,42 with v
��f − fc��, and at f = fc and small temperatures we have �
�T��/�,43 with � a thermal rounding exponent such that v

�T�. Since in this case Sq is governed by a single crossover
length � we can write the scaling form

Sq � �d+2�s�q�� , �9�

where the scaling function s�x� behaves as s�x��x−�d+2�FF�

for x�1 and s�x��x−�d+2�� for x�1. By plotting � vs v we
can obtain a “geometrical roughness diagram” showing sec-
tors with different roughness exponents at different observa-
tion length scales l: � for l� and �FF for l��. Physically, �
divides the small length scales which are dominated by the
critical configuration, i.e., the unique v=0 steady-state solu-
tion of the equation of motion for f = fc, from the large length
scales, which are governed by an effective Edwards-
Wilkinson equation with a velocity-dependent effective tem-
perature dynamically induced by the disorder.33 The physical
origin of this crossover is due to the fact that at small but
finite velocity the renormalized disorder becomes a weak
perturbation at large enough length scales, acting effectively
as a thermal-like noise in an Edwards-Wilkinson equation,
with a short-range correlation time of order rf /v and effec-
tive strength or “temperature” ��0� /v.

In a random-periodic system with localized correlation
peaks, as the ones described in the previous section, the scal-
ing of Eq. �9� must be corrected to take into account the
existence of the additional characteristic distance M. As we
show in the next section, M induces new geometrical cross-
overs at depinning, separating the geometrical roughness dia-
gram in more than two sectors.

IV. DEPINNING ROUGHNESS DIAGRAM AND SCALING
ARGUMENTS

In this section we summarize our most important physical
results about the steady-state geometry of driven random-
periodic systems with localized periodic correlation peaks.
We present the depinning roughness diagram and heuristic
scaling arguments describing the different crossovers. These
arguments are corroborated numerically and analytically in
the following sections.

In Fig. 2 we schematically show the geometric roughness
diagram we find, by analyzing the structure factor, for a ran-
dom periodic system with localized correlation peaks. It pre-
sents three roughness sectors, characterized by the roughness
exponents of the RM depinning �, the RM fast flow �FF and
the RP fast flow �FF

RP. Interestingly, unlike the RM case, for
the RP system �RP=�FF

RP, and therefore there is no signature,
in the steady-state structure factor, of the divergent length
scale �P expected for the depinning transition of a pure RP
system. We discuss this issue later. Below a characteristic
velocity vP the system crosses over, at a characteristic
velocity-independent length LP, from a small length-scale re-
gime with a roughness exponent �, corresponding to the ge-
ometry of the RM critical configuration, toward a regime
with an exponent �RP, corresponding to the RP critical con-
figuration. Above vP there are two crossovers, at the charac-
teristic velocity-dependent length scales � and LM. The first
crossover is from a regime characterized by the RM critical
depinning exponent � to a regime with the fast-flow RM
exponent �FF. The second crossover, observed by further in-

TABLE I. RM and RP characteristic roughness exponents for
the three reference states: equilibrium �EQ�, depinning �dep�, and
fast-flow �FF�. In the static equilibrium case only the random-bond
�RB� class is quoted.

d=1 RM RP

EQ �EQ=2 /3�RB� �EQ
RP =1 /2

dep �=1.25 �RP=3 /2

FF �FF=1 /2 �FF
RP=3 /2
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creasing the observation length scale, is from the RM fast-
flow regime to the RP fast-flow regime, the latter character-
ized by the exponent �FF

RP dominating the largest length
scales.

The different length scales and roughness exponents
shown in Fig. 2 can be obtained by analyzing the structure
factor. To illustrate how we obtain the roughness diagram, in
Fig. 3�a� we show a typical averaged structure factor for v
�vP for an interface in a random periodic disorder medium
with period M for parameters where we can identify the two
crossovers in a single plot. The straight lines are here only
indicative and correspond to the known roughness exponents
�, �FF and �FF

RP, which are shown to be consistent with our
numerical simulations. Increasing the observation length
scale �decreasing the wave vector q� we see different cross-
overs between different roughness regimes at the character-
istic length scales � and LM. In Fig. 3�b� we also show a
typical structure factor for an elastic chain with lattice spac-
ing M moving in a one-dimensional disordered medium, dis-
playing identical regimes of roughness. This supports the
argued connection between the geometrical properties of pe-
riodic chains of manifolds with internal dimensions d in d
+1-dimensional pure random media and single interfaces of
internal dimension d+1 in d+2-dimensional random-
periodic media.

The geometric roughness diagram for a RP system with
localized correlation peaks is richer than for the RM system,

which only displays one critical characteristic length scale �
above fc. This is due to the fact that M is an extra character-
istic length in the problem, different from rf, unlike what
occurs in CDW systems. Interestingly, the RP system we
study thus contains the RM depinning diagram, with its � and
�FF roughness sectors, for velocities larger than vP and
lengths below LM. Indeed, we find ��v�/� �independent of
the periodicity M� which coincides with the divergent length
scale of the RM depinning, being � and � RM critical expo-
nents. We can thus say that below LM for v�vP and below
LP for vvP periodicity effects, both spatial and temporal,
are not important. In other words, short lengths scales deco-
rrelate rapidly, spatially and temporally, and cannot sense the
periodic correlations of the pinning force.

To understand LP we can make the simple scaling hypoth-
esis that periodicity effects start to be important when the
average transverse size or width of the critical manifold is of
the order of the periodicity M, w�M. Since at small lengths
l, the width grows as w=rf�l / lc�� �both for vvP and

velocity

le
ng

th
sc

al
es

RM depinning

RM fast flow

RP fast flow

ξ

L
M

ξ
P

v
P

L
P

R
P

de
pi

nn
in

g

FIG. 2. �Color online� Schematic roughness diagram at the de-
pinning transition of a random-periodic system with periodicity M
and localized periodic correlation peaks as a function of its steady-
state velocity v. For vvP, the geometry is of the RM �or domain-
wall� class at small length scales lLP, while it is of the RP �or
charge-density-wave� class at large length scales l�LP, where LP

�LP�M� but independent of the velocity v. For v�vP, the geom-
etry is of the RM class at small length scales l�, where ����v� is
the RM depinning correlation length. By further increasing the ob-
servation length-scale a crossover between RM and RP fast-flow
regimes of roughness occurs at the length LM �LM�M ,v�. Note that
the large scale geometry is described by only one roughness expo-
nent since fast-flow and depinning exponents coincide in the RP
class, �RP=�FF

RP. The proposed scaling with the velocity v and the
periodicity M of the dynamical crossover lengths ��v�, LP�M�,
LM�v ,M� �see text� is corroborated by analyzing the structure factor
obtained from numerical simulations.
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FIG. 3. �Color online� Typical structure factor for �a� a moving
elastic string in a periodic random medium with periodicity M and
�b� an elastic chain with lattice spacing M moving on a nonperiodic
disorder medium. The velocity of these systems is larger than their
characteristic velocity vP �see Fig. 2�. The two systems display a
critical RM depinning roughness at small length scales which
crosses over to a RM fast-flow roughness at intermediate length
scales, and then to a RP fast-flow roughness at the largest length
scales. These regimes are separated by two characteristic dynamical
length scales: the correlation length � and the periodicity-induced
length scale LM.
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v�vP� we can compute the characteristic length LP by stat-
ing that M �rf�LP / lc��. We thus obtain that

LP � M1/� �10�

independent of the velocity. This describes well our data as a
function of M ,v. Physically, LP thus represents the length at
which the critical configuration starts to see the periodic spa-
tial correlations of the pinning force. Note that for the CDW
case we have M �rf and thus LP� lc. Therefore we would
not observe this RM critical sector for a CDW.

To estimate LM for v�vP we must be more careful. In-
deed, the static argument given above of matching the width
w of the sliding manifold with M is incorrect in this case.
This argument would give M �rf�� / lc���LM /���FF or LM
����M /rf��lc /����1/�FF, and by using ��v−�/� we finally get
LM �v−��1−�/�FF�/�. Since, in general, ���FF we get the incor-
rect result that LM grows with the velocity, inconsistent with
our data. The error in making such an argument comes from
the fact that for v�vP the roughness of the interface is de-
termined, above LM, by the temporal correlations of the pin-
ning force �when seen from the moving interface�. Indeed,
despite the fact that wM and that the renormalized disor-
der is already weak at LM, periodicity effects are relevant
above a certain length beyond which the manifold has not
time to relax all its modes after moving by a distance M. The
steady-state geometry of the moving system thus probes the
periodic correlations of the pinning force. We must thus
compare the typical relaxation time in the RM fast-flow re-
gime ��l���c�� / lc�z�l /��zFF, for � l�LM, with the “time of
flight” �M =M /v, being zFF�zTH=2 the dynamical exponent
of the fast-flow RM class, z the dynamical exponent of the
critical RM regime, and �c a microscopic time. If these times
equate at LM

LM � M1/zFFv−� �11�

with

� =
1

zFF
−

�

�
� z

zFF
− 1� . �12�

This result with ��0 describes well our numerical data, as
we show later.

Having LM and LP we can now determine the character-
istic velocity vP of the roughness diagram, defined as
LM�vP�=LP. We get

vP � M−1/�� �13�

and therefore

LM = LP�vP

v
��

. �14�

It is worth noting here that while vP decreases, LM and LP
increase with increasing M. This means that for large enough
M the RM sector of the roughness diagram of Fig. 2 grows
and in practice the system behaves as a RM system. Con-
versely, for small M the RP sector grows and dominates the
behavior at small velocities.

We also note that below vP and above LP we expect to
observe RP or CDW-like depinning with a divergent corre-

lation length �P��f − fc�−�RP
. However, unlike the RM case,

the divergent length does not manifest itself as a crossover
between roughness regimes of the structure factor, since
�RP��FF

RP. This is consistent with the fact that the roughness
exponent �RP=�L= �4−d� /2 for the RP appears in functional
renormalization group calculations from the generation of a
random force in the renormalized pinning correlator.29 In
other words, the pinning forces acting on pieces of size LP
are essentially uncorrelated and the model thus effectively
becomes the Larkin model with a roughness exponent �L
= �4−d� /2. In this respect, in Sec. VI we show that �FF

RP

��L from numerical simulations.
The roughness diagram of Fig. 2 appears to be valid at

small finite temperatures within the “thermal-rounding” re-
gime, as we find numerically. In this regime the effect of the
temperature translates into a finite velocity v�T� at f = fc but
does not affect the large-scale roughness regimes. The depin-
ning roughness diagram of Fig. 2 thus remains the same,
whether the velocity is originated by driving force, small
temperature or both. In the following sections we describe
our numerical simulation method and results supporting the
roughness diagram of Fig. 2 and the scaling for the different
crossover lines.

V. DETAILS OF NUMERICAL SIMULATIONS

We present here a detailed description of the numerical
methods we use to study the RP system with localized cor-
relation peaks. For simplicity we analyze low dimensional
manifolds but our results remain qualitatively the same for
higher dimensions. The d=1 case turns out to be on the other
hand the most stringent case for our general arguments.

We study the motion of an elastic string in a disordered
environment described by Eq. �1� in d=1 �D=2�. In order to
numerically solve Eq. �1� for the elastic string we discretize
the D=2 embedding medium in the longitudinal z direction
in L segments of unit size, keeping the transverse displace-
ment field u�z� as a continuous variable in the x direction.
The discrete system of equations read

	�tu�z,t� = c�u�z + 1,t� + u�z − 1,t� − 2u�z,t�� + Fp�u,z� + f

+ 
�z,t� �15�

with z an integer. Periodic boundary conditions of size M
�resp. L� are imposed for the transverse �respectively, longi-
tudinal� system sizes. Besides avoiding boundary effects, this
model presents several advantages which have been ex-
ploited in various ways for nonperiodic systems.42,43,47,49,63

The critical force and critical configuration for such finite
systems can be determined for each sample in polynomial
time with arbitrary precision by exploiting the Middleton
theorems.39 Moreover, the complete sequence of metastable
states below threshold, and, in particular, the one dominating
the creep motion at low temperatures can be determined for
each particular sample exactly, by generalized, Middleton-
type, theorems.49,50 This method thus allows for a well con-
trolled analysis of key properties such as the critical force
statistics, the critical exponents of the depinning transition,
and the different roughness crossovers.
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To show the generality of our results we also study for
comparison the problem of an elastic chain by solving Eq.
�5� in D=1 and d=0

	�tun�t� = c̃�un+1�t� + un−1�t� − 2un�t�� + Gp�nM + un� + f

+ 
n�t� . �16�

As mentioned above, Fig. 3 shows that the elastic string,
described by Eq. �15� and the elastic chain, described by Eq.
�16� display the same roughness crossovers around depin-
ning. We argue that this geometrical equivalence is general,
between the d dimensional manifold in a D=d+1 disordered
medium with period M and the periodic chain of d−1 dimen-
sional elastically coupled manifolds with lattice spacing M in
a D=d dimensional disorder medium. Therefore we study in
details the case of the elastic string and translate appropri-
ately our results to both kinds of systems in any dimension d.
The resulting discrete system of equations for the elastic
chain in D=1, Eq. �16� are indeed similar to the ones for the
string in D=2, by identifying the discrete values of z for the
particles of the string with the index n for the particles of the
chain. The main differences between the two systems are the
pinning force correlations. While the pinning force on the
string is uncorrelated for different values of the labeling vari-
able z, the pinning force on the chain is correlated for differ-
ent values of the labeling variable n, since in the latter case
the particles visit the same disorder as they move. This dif-
ference can be better appreciated by remarking that the equa-
tions for the elastic chain are equivalent �by interpreting n as
z� to the ones of a tilted elastic string in a D=2 medium with
columnar disorder, being �=tan−1�M /L� the imposed tilting
angle. The result of Figs. 3 is thus nontrivial and suggests
that the roughness diagram of Fig. 2 is general for elastic
system with pinning forces displaying localized disorder cor-
relation peaks.

The equations of motion, Eqs. �15� and �16�, are inte-
grated using Euler method with a time step �t=0.01. We set
	=1, c= c̃=1, rf =1, and a disorder strength ��0�=1. A dif-
ferent choice of these microscopic parameters does not quali-
tatively alter our results. The continuous random potential
for the string V�u ,z�=−�duFp�u ,z� is modeled by L cubic
splines passing through M regularly spaced uncorrelated

Gaussian numbers points. For the chain, the potential Ṽ�u�
=−�duGp�u� is numerically generated with random spline
passing through L�M regularly spaced uncorrelated Gauss-
ian numbers points. Disorder average is done by averaging
over different realization of the Gaussian random points. Us-
ing these disorder potential models, when M �rf the corre-
sponding pinning forces display periodic correlations with
localized peaks in a range rf.

VI. NUMERICAL RESULTS

In this section we show and discuss the numerical results
for the characteristics lengths, roughness exponents and char-
acteristic velocities, appearing in the geometrical roughness
diagram of Fig. 2. We describe separately the different cross-
overs for v�vP and vvP.

A. Roughness crossovers for v�vP

We start by discussing the two crossovers observed in
Figs. 3�a� and 3�b� for v�vP, at the characteristic lengths �
and LM, respectively. One observes three roughness regimes
for given values of L and M. They correspond to the three
regimes observed in Fig. 2 for velocities above vP. Increas-
ing the length scale �decreasing the wave vector q� the local
roughness exponent changes from ��1.25, to �FF=0.5, and
finally to �FF

RP=�L=1.5. The first two roughness exponents are
characteristic of the RM depinning and we can identify the
crossover length � with the divergent correlation length of
the RM depinning down to vP. The second crossover length
LM is proper to our system, separating the fast-flow regime
of the RM class from the one of the RP class.

For pure RM models the value ��1.25 was obtained nu-
merically before by very different methods66,67 and, in par-
ticular, by exact algorithms.41,42 Two loop renormalization
group calculations for the RM class are required to get values
that are consistent with this result.29 The exponent �FF was
obtained by numerical simulations,42 and by analytical
arguments.33 As described above the physical meaning of the
appearance of �FF is that at large length scales the velocity v
becomes very important and disorder effectively acts as an
spatially uncorrelated time-dependent perturbation with
short-range temporal correlations in a range rf /v. The
strength or “effective temperature” of this effective noise is
thus proportional to ��0� /v.33 Eq. �1� then effectively be-
comes an Edwards-Wilkinson equation for which it is
straightforward to show that the steady-state roughness ex-
ponent is �TH= �2−d� /2 for d�2, and �TH=0 for d�2. For
d=1 we have �FF=�TH=1 /2, consistent with our numerical
result for the present system.

As described in Sec. IV the crossover at LM for v�vP
occurs when the relaxation time of the string in the RM
fast-flow regime becomes of the order of the time of flight
M /v. The resulting scaling of LM with M and v involves
several exponents of the RM class, and hence it is a good test
for the validity of our scaling arguments. For fixed external
force and temperature and changing the transverse size M
only the crossover around LM changes in the structure factor,
as observed in Figs. 4�a� and 5�a�. Thus, for the crossover at
large length scales the structure factor can be written, for q
��−1 as

SqLM
−�1+2�FF� = G�qLM� �17�

with G�x��x−�1+2�FF
RP� for x�1 and G�x��x−�1+2�FF� for x

�1. Using Eq. �11� for LM, and since the velocity is fixed by
f and T, we get the following scaling formula

SqM−�1+2�FF�/zFF � G�qM1/zFF� . �18�

In Figs. 4�b� and 5�b� we test this scaling prediction as a
function of M for a fixed velocity by plotting SqM−�1+2�FF�/zFF

vs qM1/zFF for different values of M. In Fig. 4 the velocity is
produced by a force above threshold at zero temperature
while in Fig. 5 the velocity is produced by a finite but small
temperature at f = fc. In both cases we find that the scaling
form proposed collapses well the different curves by using
zFF=2 which corresponds to the dynamical exponent of a
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RM model at large velocities �i.e., the dynamical exponent of
the Edwards-Wilkinson equation with the disorder-induced
Langevin-type noise�. As expected, deviations from the good
collapse are observed only at large q, where the presence of
the extra characteristic length � invalidates the simple scaling
of Eq. �18�. We also note that in the nonscaled data in Figs.
4�a� and 5�a� Sq becomes M independent for q��−1. This is
consistent with the fact that � does not depend on M but only
on the velocity, ��v−�/� near depinning, unlike LM which
depends on both, v and M.

In order to study the velocity dependence of the structure
factor and its crossover lengths we have applied both differ-
ent driving forces f � fc at T=0 and small temperatures for
f = fc. In Figs. 6�a� and 7�a� we show Sq as a function of the
force and temperature, respectively. The crossover around �
can be described, for q�LM

−1, with the scaling relation

Sq � v−�1+2���/�G̃�qv−�/�� �19�

with the function G̃�x��x−�1+2�FF� for x�1 and G̃�x�
�x−�1+2�� for x�1. This scaling form depends on force and
temperature only through v. To get explicitly these depen-

dencies we can use, for small v and f � fc that v� f̃� for f

� fc, with f̃ = �f − fc� / fc the reduced force, and v�T� for f
= fc and small T.43 Figures 6�b� and 7�b� show the respective
scaling forms around �. However, this scaling form is valid
up to the scale LM where periodicity effects are important

and G̃�x� is not longer universal. The crossover of G̃�x� to
RP fast flow can be written as

G̃�x� � xM
−�1+2�FF�Ḡ� x

xM
� , �20�

where xM =v−�/� /LM and the new function Ḡ�y��y−�1+2�FF
RP�

for y�1 and Ḡ�y��y−�1+2�FF� for y�1. Using Eq. �11� one
can write, for fixed M and for q�1 /� that the structure fac-
tor behaves as

Sq � v−�Ḡ�qv−�� �21�

with

� = 2�� − �FF��/� + �1 + 2�FF�� . �22�

This form describes the crossover between RM and RP fast-
flow regimes of the structure factor. Figures 6�c� and 7�c�
show this scaling form when the velocity is generated by
finite drive at zero temperature or by a small finite tempera-
ture at f = fc.

Therefore, in Figs. 6 and 7 we test the latter scaling pre-
diction as a function of f for f � fc and T=0, and as a func-
tion of T for f = fc by using the known values �=1 /3,29,42

�=0.15.43 Since Sq has two characteristic lengths LM and �,
we show separately the collapse around the two crossovers.
In Figs. 6�b� and 7�b� we show the collapse around � and in
Figs. 6�c� and 7�c� the collapse around LM, for the same set
of curves Sq�f ,T� of Figs. 6�a� and 7�a�, respectively. The
collapse obtained by using the known values of �, � �, �FF, z,
and zFF fully supports our interpretation of the two cross-
overs.
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B. Roughness crossovers for vvP

As shown in Fig. 2, at vP we have LM�vP�=��vP�=LP,
where LP is independent of the velocity. The RM fast-flow
regime thus disappears at vP. This implies that periodicity
effects are already generated by static pinned configurations
and not dynamically as described in the derivation of LM. LP
is precisely the length at which, for vvP, the width of a
typical RM critically pinned configuration reaches M. Below
LP, periodicity effects are absent and the typical critical con-
figuration is not sensitive to M. Just above LP, the critical
configuration crosses over to the RP class. To prove the ex-
istence of this crossover we show in Fig. 8 that the structure

factor of a string with L�LP and vvP can be written as

SqM−�1+2�RP�/� = H�qM1/�� �23�

with H�x��x−�1+2�RP� for x�1 and H�x��x−�1+2�� for x�1.
We have used LP�M1/� and the previously known values of
�RP and �. The collapse of Fig. 8 thus supports our interpre-
tation of this crossover.

As discussed in Sec. IV and shown in Fig. 2, we expect a
second crossover at a length �P above LP, representing the
dynamical correlation of the RP depinning. The regime be-
tween LP and �P thus represents the RP critical regime with
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the roughness exponent of the RP critical configurations. As
discussed in Sec. IV, �RP=�FF

RP, and due to this the RP depin-
ning correlation length �P cannot be detected by analyzing
Sq. This suggests that subtle geometrical measures are prob-
ably needed to locate �P.68

VII. DISCUSSION

In this section we discuss, by analytical arguments and
additional numerical simulations, the results obtained in the
previous sections. We first discuss, in Sec. VII A, how to
analytically calculate the crossover from random-manifold to
random-periodic fast flow regimes of roughness at the length
scale LM, which is absent in the pure Random-Manifold or
Random-Periodic depinning. The numerical results of Sec.
VI support the depinning roughness diagram of Fig. 2 which
is found to be the same for interface pinning potentials with
periodic correlations and for periodic elastic systems such as
chains. In Sec. VII B we discuss this interesting equivalence
between the geometry of periodic elastic systems in random
pinning potentials and interfaces in random-periodic pinning
potentials. We give analytical and numerical arguments. In
Sec. VII C we discuss how to extend the roughness diagram
of Fig. 2 to the creep regime in the low temperature limit,
based on the effects of periodicity in the statics and depin-
ning. Finally, in Sec. VII D we discuss the implications of

the roughness phase diagram for numerical simulations of
elastic strings with periodic boundary conditions and the
thermodynamic limit.

A. Random-manifold to random-periodic crossover
in the fast flow regime

We show here how the crossover from random-manifold
to random-periodic fast flow and their respective roughness
exponents can be analytically computed. We consider here a
simplified model of disorder perturbatively in the large ve-
locity and small temperature limit of Eq. �15�. We will show
this approach yields correct results for the velocity and peri-
odicity dependence of the crossover length, which can be
therefore identified with LM in Fig. 2, when using the renor-
malized friction, disorder strength and temperature at the
length scale �.

At high velocities and small temperatures, we approxi-
mate the pinning force Fp�u ,r� by Fp�vt ,r�. In doing so, we
assume, a priori, that the disorder-induced and thermally in-
duced displacements are small in the regime we are inter-
ested in. In this approximation the pinning force becomes an
effective thermal-like noise 
̃�t ,r��Fp�vt ,r� with temporal
correlations given by


̃�t,r�
̃�t�,r�� = ��v�t − t�����r − r�� . �24�

Since ��x� has a spatial range rf, the range of temporal cor-
relations of 
̃ is rf /v and its effective temperature propor-
tional to ��0� /	v. Within this approximation, the equation of
motion becomes linear, and its solution in Fourier space is,
for a particular component q=q . ẑ of the wave vector q

uq�t� = 	−1�
0

t

dt�e−cq2�t−t��/	�f�q,0 + 
̃q�t� + 
q�t�� . �25�

The instantaneous structure factor is thus given by

Sq�t� = �	uq�t�	2� = Sq
EW�t� + Sq

FF�t� , �26�

where the first contribution is the Edwards-Wilkinson or
purely thermal structure factor

Sq
EW�t� =

T

cq2 �1 − e−2cq2t/	� �27�

and the second contribution comes from the disorder-induced
noise 
̃

Sq
FF�t� = 	−1�

0

t �
0

t

dt1dt2e−cq2�2t−t1−t2�/	��v�t2 − t1�� .

�28�

To proceed we assume a particular periodic correlator ��u�
=��u+nM� with n an integer. A simple choice for ��u� hav-
ing sharply localized peaks at u=nM is

��u� = �p�
n

��u − nM� . �29�

This kind of disorder arises physically from a random distri-
bution of identical point like pinning centers acting on a very
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thin interface, in the limit rf →0 with the constraint
�0

Mdx��x�=�p and �p a constant measuring the strength of
the disorder. With such disorder the fast-flow contribution to
the structure factor can be easily integrated to get

Sq
FF�t� =

�p

2	vcq2 �1 − e−2cq2t/	�
1

1 − e−2cq2M/	v
. �30�

Then, the total instantaneous structure factor can be ex-
pressed as

Sq�t� = Sq
EW�t��1 +

�p

2	vT

1

1 − e−2cq2M/	v� . �31�

Since we are interested in the steady-state we take the
t→� limit to obtain the steady-state structure factor

Sq =
1

cq2�T +
�p

2	v

1

1 − e−2�qlM�2� , �32�

which presents the characteristic length lM ��Mc /	v or
characteristic time �M �M /v.

For large length scales such that q� lM
−1 we have

Sq �
T

c
q−2 +

�p

4cM
q−4, �33�

where the velocity v does not appear explicitly. At T=0, Sq
�q−4, implying that the large scale roughness exponent is
identical to the one of the Larkin model �L= �4−d� /2 if d
�4 and �L=0 otherwise. This is consistent with our finding
�FF

RP=�L=3 /2 for the d=1 case �string� in a random periodic
medium and also for the elastic chain. If T�0 we could have

a roughness crossover at qT=� �p

4TM , where the two terms in
Eq. �33� become equal. However, for this roughness cross-
over between �TH �with �TH= �2−d� /2 for d�2 and �TH=0
otherwise� to �L to be observable we must require qT� lM

−1 or
equivalently T��pc /v. Since �p /v can be identified with
the shaking temperature Tsh of Ref. 69 the condition for ob-
serving this crossover in this regime reads Tsh�v��T, mean-
ing that disorder-induced fluctuations must be much smaller
than thermal fluctuations.

If q� lM
−1 on the other hand, we have

Sq �
1

cq2�T +
�p

2v
� , �34�

which is equivalent to the Edwards-Wilkinson structure fac-
tor at an effective temperature Teff�v�=Tsh�v�+T, yielding a
roughness exponent �TH.

From Eqs. �34� and �33� we thus see that if the tempera-
ture is small compared to Tsh�v�=�p /2v there is a roughness
crossover at the length scale lM from �FF=�TH to �FF

RP=�L
when increasing the observation length scale. This is in
agreement with the roughness diagram of Fig. 2 for v�vP
and lengths above �. By comparing lM and LM we see that
both quantities have the same M dependence, since zFF=2.
The explicit velocity dependence, even if it is a power law in
both cases, is different. In this model we find lM ��	v�−1/2,
instead of LM �v−1/2+��/���z/2−1� which describes well our data
and was predicted in Eq. �11� by pure scaling arguments. We

also note in this respect that the structure factor at small q
predicted by the model appears to be velocity independent
and temperature dependent, in contrast to what we predict by
scaling arguments and what the data presented in Sec. VI
supports. These differences can be directly attributed to the
incorrect use of the bare friction constant 	, disorder strength
�p, and temperature T in our perturbation theory, instead of
using their renormalized velocity-dependent values 	̃�v�,
�̃0�v�, and T̃ at the length scale �. To prove this we first note
that at the length scale � we have 	̃�v�v= �f − fc�=�−1/� and
therefore 	̃�v�=v−��/���2−z�. Then, by replacing 	 by 	̃�v� we
get the same velocity and periodicity dependence for lM and
LM. This justifies the identification of the crossover predicted
with the present model with the one from the RM to the RP
fast-flow regimes observed in the simulations and estimated
in Sec. IV by physical arguments.

B. Elastic string vs elastic chains

We discuss here the equivalence observed between the
geometry of an elastic line in a two-dimensional RP potential
and the one of a periodic chain in a one-dimensional nonpe-
riodic random potential. We argue that this connection is
general between D-dimensional thin interfaces transversely
displacing in random-periodic D+1-dimensional spaces and
a periodic array of �D−1� dimensions coupled interfaces in a
D-dimensional random medium. The connection between the
two systems is however not trivial since there is no exact
mapping between these two systems. We describe first the
case of the statics, which can be discussed in terms of the
replicated Hamiltonian and complemented with additional
transfer-matrix numerical calculations, and then the dynam-
ics.

1. Statics

We start by analyzing first the static problem, i.e., F=0
and T=0, of the elastic line in a two-dimensional random-
periodic disorder and then compare it with that of a one-
dimensional elastic chain over a random potential. Let us
consider an elastic line described by the univalued function
u�z�, where u is a function in the transverse direction, and z
gives the longitudinal direction. The elastic contribution to
the Hamiltonian is

He =
c

2
� dz��zu�2 �35�

while the disorder contribution in term of the line density
��x ,z� is

Hdis =� dxdzV�x,z���x,z� . �36�

Using the integral representation of the � function one can
write the density as

��x,z� = ��x − u�z�� =
1

2�
� d�ei��x−u�z��. �37�

In order to consider the periodicity of the system in the x
direction, the disorder potential can be written as a sum over
periodic images as
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V�x,z� = �
p

Ṽ�x − pM,z� , �38�

where Ṽ�x ,z� is the disorder potential defined in the interval
x� �−M /2,M /2�. Using this periodic potential one can write
for the disorder Hamiltonian that �see the Appendix�

Hdis = −
�0

2TM
�
a,b

�
K
� dze−iK�ua�z�−ub�z��, �39�

where K=2�n /M. This last expression is strictly identical to
the one of a periodic system for which K are the vectors of
the reciprocal lattice, as we show in the following.

In order to describe the one-dimensional periodic chain in
a one-dimensional disordered potential, let us consider an
elastic chain of average lattice space a, which corresponds to
average density �0=1 /a. One can imagine a chain composed
of masses and springs of constant length. Each “mass” has a
finite internal width � and the center of consecutive masses
are separated a distance a. The positions of the particles are
given by xj =xj

0+uj = ja+uj, where xj
0= ja is the nominal po-

sition in the unperturbed lattice and uj is the displacement. In
order to treat the model one should go from the uj variables
to a continuum formulation. Through this relabeling process,
the decomposition of the density in this one-dimensional
problem leads to a density field

��x� = �
j

��x − xj
0 − uj� � �0�1 − �xu�x� + �

K�0
eiK�x−u�x��� ,

�40�

where the last expression is valid for �xu�1, and K
=2�n /a are the reciprocal lattice vectors. The continuum
field

u�x� = �
0

2�/a dq

2�
eiqx�

j

eiqxj
0
uj �41�

is valid for x�a. For details on the relabelling process see
Ref. 59, especially Appendix A.

Considering the decomposition of the density and using a
replica formalism, the replicated disorder Hamiltonian can
be finally written as �see the Appendix�

Hdis = −
�c�0

2

2T
�
ab
� dx��xu

a�x��xu
b�x� + �

K�0
e−iK�ua�x�−ub�x��� ,

�42�

which, with the exception of the �xu
a�x��xu

b�x� term, is for-
mally equivalent to Eq. �39�. However, the original one di-
mensional chain in a one-dimensional disorder potential, as
studied by Cule and Hwa,51,52 contains also a term propor-
tional to �xu�x�. This term is irrelevant at large length scales
in dimensions d�2 and gives a finite shift of the correlations
function in d�2. This term is indeed a renormalization of
the quadratic part of the Hamiltonian and it is commonly
accepted that it does not change the roughness exponent.51,52

Then, when comparing the periodic disorder case to the
periodic chain, the period of the disorder potential M be-
comes the average distance between neighboring particles.

Thus, when the fluctuation of the particles becomes on the
order of the average distance, the system enters a RP or
CDW regime. Then, in the static limit, structural fluctuations
at large length scales are given by the roughness exponent
associated to the static CDW problem, �EQ

RP =1 /2. At finite
M �1 a crossover appears at a given length scale, corre-
sponding to the scale for which the disorder induced fluctua-
tions become of the order of the periodic box.

The geometrical equivalence argued above can be tested
directly by transfer-matrix calculations for the ground state
of a one-dimensional chain and the one of an elastic string.
In Fig. 9 we compare the structure factor of both systems, for
different periodicities M �rf. We see almost no difference,
meaning that the extra terms in the replicated Hamiltonian
for the chain are irrelevant. We also find that the structure
factor has a crossover at a characteristic length LP

0 �LP
0�M�

between a regime with the RM equilibrium roughness expo-
nent �EQ=2 /3 at small length scales, to a regime with the RP
equilibrium roughness exponent �EQ

RP =1 /2 at large length
scales. In Fig. 9 we show that the structure factor is well
described by the scaling formula

Sq � q−�1+2�EQ�H̃�qLP
0� �43�

with a crossover length LP
0 �M1/�EQ. The function H̃�x� is

such that for small x it behaves as x2��EQ−�EQ
RP�. The crossover

at LP
0 can be understood in the same terms as for the cross-

over length LP at depinning. LP
0 is in this case the length at

which the width w�L��L�EQ of the interface at the ground
state becomes of the order of the periodicity, w�LP

0��M. As
for depinning when M �rf the structure of the system at
equilibrium is identical to the RM one and crosses over to
the RP one at large length scales.

2. Dynamics

One can do a similar comparison for the dynamics of the
elastic line in the periodic disorder potential and the periodic
chain in disordered medium. As usual, we model the motion
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FIG. 9. �Color online� Ground-state geometry of the elastic
string �open symbols� and the one-dimensional chain �closed sym-
bols� problems as obtained with transfer matrix calculations. The
data are represented in a scaled form and the closed symbols are
shifted upwards for clarity.
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of an elastic string in a disordered environment by means of
the overdamped equation of motion Eq. �15�. The pinning
force is

Fp = −
�Hdis

�uzt
=

1

M
�
K

Ṽ�x,z��iK�eiK�x−uzt�e−K2�2
, �44�

where we use the notation u�z , t��uzt. If now one use the
Martin-Siggia-Rose formalism as in Ref. 70, then it can be
shown that Fp interacts only linearly with the operator ûzt.
Thus one can replicate over different times in order to obtain
an averaged expression similarly to what was done in the
previous section, which results in a term proportional to

−
�0

M
�
K
� dzdt1dt2K2e−iK�uzt1

−uzt2
�e−2K2�2

ûzt1
ûzt2

. �45�

Again, this is equivalent, up to a factor proportional to
�xu�x�, to the case of the one dimensional periodic system.70

The main difference is the convective term but it can be
shown that it is irrelevant since an arbitrary shift u�x�
→u�x�+ f�x� leaves the disorder term unchanged.70

C. Roughness diagram in the creep regime

The roughness diagram of Fig. 2 for depinning and the
results of Fig. 9 can be combined to infer a roughness dia-
gram as a function of the driving force, including the ex-
pected crossovers in the creep regime, f  fc. As it was
shown in Ref. 50 for pure RM �or RF� systems, below the
depinning threshold fc a characteristic length Lopt�Lopt�f�
exists. This length grows with decreasing f separating the
small length-scales described by the equilibrium �f =0�
roughness from the depinning �f = fc� roughness. Since M
�rf, we can expect to observe the same behavior for the
random-periodic system at intermediate and small length
scales for which the RP systems behave as RM �or RF� sys-
tems. Since at large length scales the effect of periodicity
should always appear, it is plausible to connect the crossover
lengths LP at f � fc and LP

0 at f =0 by a dynamic crossover
length lP� lP�f ,M� in the creep regime. The width of the
interface at LP is thus given by

M � �LP
0��EQ �46�

if f  fP
0 and

M � Lopt
�EQ� lP

Lopt
��

�47�

if fP
0  f  fc, with fP

0 a new characteristic force, defined by
the condition lP�fP

0 ,M�=LP
0�M�. Therefore

lP � Lopt� M

Lopt
�EQ

�1/�
�48�

with fP
0  f  fc. In the diagram of Fig. 10 we schematically

show the crossover length lP separating the RM from the RP
depinning roughness in the creep regime. It shows several
sectors, including the equilibrium, depinning and fast-flow
geometries of both the RM and the RP �note however that the
fast flow and depinning RP regimes have the same roughness
exponent�.

Note that at variance with LM, lP can be obtained by a
static argument similar to the one used for LP since the ve-
locity vanishes rapidly in the low temperature creep regime.
The system has thus enough time to relax all its �nonzero�
modes in the time of flight �M =M /v. Note in this respect that
the largest length scales obey an Edwards-Wilkinson equa-
tion with correlated noise, and thus their relaxation times are
governed by a dynamic exponent, contrarily to the zero-
mode displacement.

D. Periodic boundary conditions and the thermodynamic limit

We present here a discussion concerning numerical simu-
lations and the proper thermodynamic limit. It is well known
that when using numerical simulations to describe interface
depinning and creep, a main shortcoming of the numerical
method is coming from the difficulty in taking the thermo-
dynamic limit M→� and L→�. In order to perform a con-
sistent finite-size analysis one has to carefully specify how
both M and L should tend to infinity, as different prescrip-
tions for the aspect ratio scaling lead to very different results.

It has been shown that the sample-to-sample fluctuations
of the critical force drastically change with the ratio M /L�.62

For very small M compared to L� periodicity effects are im-
portant and the distribution of critical forces is Gaussian,
while at very high values of M the critical force is dominated
by extreme values and its distribution becomes of the Gum-
bel form. In the first case the mean critical force is always
bounded while in the latter grows logarithmically with M
and is thus infinite in the thermodynamic limit. For the as-
pect ratio scaling M �L� it was shown that the mean critical
force is finite and well defined in the thermodynamic limit
where the system displays pure RM behavior. In this last
case, the critical force distribution is between Gaussian and
Gumbel. The aspect ratio scaling M =kL� leaves however
open the question of what is the optimal value of k for avoid-
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FIG. 10. �Color online� Depinning roughness diagram of Fig. 2
extended to the creep regime 0 f  fc, at small temperatures. The
diagram displays roughness exponents of the RM and RP classes at
equilibrium, depinning, and fast flow.
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ing effects induced by the transverse boundary conditions.
This has motivated the use of a different method for calcu-
lating steady-state properties of the same system, in which
the control parameter is not the force but the mean velocity
of the manifold by replacing the driving force by a uniform
spring with constant m2, f →m2�vt−u�r��, pulling the whole
manifold at a constant speed v in a transversely infinite me-
dium. This model allows for more direct comparisons with
analytical calculations,48,71–76 and has the advantage, com-
pared with the force-controlled model, that the characteristic
length Lm induced by the parabolic moving potential is con-
trolled only by the spring constant Lm�1 /m, and not by the
velocity-dependent geometry of the manifold. When model-
ing a system for which the spring has not a physical origin
the correct scaling for the spring constant is simply Lm�L in
this case and thus very small values of m are required in the
large-scale limit.

If one wants to stick to the constant-force model the most
natural empirical choice for the aspect ratio scaling is w�L�
�M, where w is the average width of the manifold.62 The
problem with such prescription is that w�L�, being an inte-
grated quantity w��dqSq, has a complicate dependence with
the mean velocity of the manifold through the velocity-
dependent correlations lengths separating different regimes
of roughness, and through the values of the different rough-
ness exponents. The geometrical roughness diagram of Fig. 2
shows clearly that this is indeed the case, and gives at the
same time an answer to this problem. It shows that for a
fixed value of M, the optimal aspect ratio scalings are L
=LP�M� for vvP, equivalent to those proposed in Ref. 62,
but a different aspect-ratio scaling, L=LM�v ,M�, for v�vP.
Figure 2 thus shows that using a velocity-independent pre-
scription L=LP�M��M1/�, which works for the critical con-
figuration, would always give inconsistent results at all non-
zero velocities in the thermodynamic limit, since vP→0
when M→� and then L�LM at a fixed v. Therefore, by
increasing M within this prescription the system would even-
tually display periodicity induced effects at any finite v, in-
ducing an artificial crossover as a function of the velocity in
nonperiodic systems. This crossover induced by periodicity
is on the other hand physically interesting for RP systems
with localized correlation peaks.

VIII. CONCLUSIONS

We have studied numerically the depinning transition of
driven elastic interfaces in a random-periodic medium with
localized periodic-correlation peaks in the direction of mo-
tion. We have obtained a dynamical roughness diagram
which contains, at small length scales, the critical and fast-
flow regimes typical of the RM �or domain wall� depinning,
and at large length scales, the critical and fast-flow regimes
typical of the RP �or charge-density wave� depinning. From
the equilibrium behavior of these kind of systems we have
also inferred a richer dynamical roughness diagram including
the low-temperature creep regime which additionally in-
cludes roughness sectors corresponding to the equilibrium
geometry of the RP and RM classes.

Our results are relevant for understanding the geometry at
depinning of periodic arrays of elastically coupled thin mani-

folds in a disordered medium such as driven particle chains
or vortex-line planar arrays since these periodic systems dis-
play localized periodic correlation peaks. In particular, our
results are relevant for properly controlling the effect of
transverse periodic boundary conditions in large-scale simu-
lations of constant-force driven disordered interfaces. From
the roughness diagrams of Figs. 2 and 10 we see indeed that
the aspect ratio relation must be carefully chosen when tak-
ing the thermodynamic limit, depending whether one wants
to study the large-scale behavior of a pure RM or a RP sys-
tem.

We have also argued that there is a geometrical equiva-
lence between the d-dimensional periodic elastic system
moving in d dimensions and the d-dimensional elastic inter-
face moving in a d+1 dimensional periodic medium, al-
though the mapping between these two systems is not exact.
In this respect we note that the d=1 case we have studied
numerically is the most stringent case since it goes beyond
the usual small slope approximation used to develop the den-
sity in periodic components, Eq. �40�. Indeed, since the
roughness exponent for chains is larger than one, the average
difference between the displacements of neighboring par-
ticles grows with the system size, violating the small slope
approximation for large systems. Despite this fact, the results
still remain valid even for the one dimensional case. We thus
conclude that this equivalence is rather robust and should
hold for higher dimensional cases.
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APPENDIX: ELASTIC STRING VS ELASTIC CHAINS

In this appendix we show how the disorder Hamiltonian
for the elastic string in periodic disorder and for the periodic
chain in one-dimensional disorder can be obtained.

1. Two-dimensional periodic disorder

The disorder contribution to the full Hamiltonian of the
system is

Hdis =� dxdzV�x,z���x,z� . �A1�

The line density ��x ,z� gives the position of the interface.
In order to consider the periodicity of the system in the x

direction, the disorder potential can be written as a sum over
periodic images as

V�x,z� = �
p

Ṽ�x − pM,z� , �A2�

where Ṽ�x ,z� is the disorder potential defined in the interval
x� �−M /2,M /2�. In terms of a traditional uncorrelated
Gaussian disorder V0�x ,z�, one can directly define
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Ṽ�x,z� = �M�x,z�V0�x,z� �A3�

using that

�M�x,z� = �1 if x � �− M/2,M/2�
0 otherwise.

� �A4�

The disorder term thus becomes

Hdis =� dxdzV�x,z���x − u�z��

=� dxdz�M�x,z�V0�x,z��
p

��x − pM − u�z�� .

�A5�

In order to obtain a disorder averaged Hamiltonian we use
the replica trick59,77

Hdis = −
1

2T
�
ab
� dxdx�V�x�V�x���a�x��b�x�� . �A6�

Then, using the integral representation of the � function

��x,z� = ��x − u�z�� =
1

2�
� d�ei��x−u�z�� �A7�

the replicated Hamiltonian reads59

Hdis = −
1

2T
�
a,b

�
p1,p2

� dx1dz1dx2dz2�M�x1,z1��M�x2,z2�

� V0�x1,z1�V0�x2,z2�

� ��x1 − p1M − ua�z1����x2 − p2M − ub�z2�� . �A8�

Now, using for the disorder potential correlator that

V0�x1,z1�V0�x2,z2� = �0��x1 − x2���z1 − z2� �A9�

and since �M =0,1 implies �M
2 =�M, one has

Hdis = −
�0

2T
�
a,b

�
p1,p2

� dxdz�M�x,z�

� ��x − p1M − ua�z����x − p2M − ub�z�� .

�A10�

Now, we perform the sum over the localization function,
resulting in

�
p1

��x − p1M − ua�z�� =
1

M
�
K1

eiK1�x−ua�z��, �A11�

where K1=2�n1 /M and we used that

�
j

eiqjM =
2�

M
�
K

��q − K� . �A12�

Thus, the disorder Hamiltonian can now be written as

Hdis = −
�0

2TM2�
a,b

�
K1,K2

� dxdz�M�x,z�

� eiK1�x−ua�z��eiK2�x−ub�z��. �A13�

Now, using that

�
−M/2

M/2

dxei�K1−K2�x = M�K1,K2
�A14�

performing the integral over x and summing over K2, one
arrives at

Hdis = −
�0

2TM
�
a,b

�
K
� dze−iK�ua�z�−ub�z��. �A15�

2. One-dimensional periodic chain

The positions of the particles are given by xj =xj
0+uj = ja

+uj, where xj
0= ja is the nominal position in the unperturbed

lattice, uj is the displacement and a is the average lattice
space. In order to treat the model one should go from the uj
variables to a continuum formulation. Through this relabel-
ling process, the decomposition of the density in this one-
dimensional problem leads to a density field

��x� = �
j

��x − xj
0 − uj� � �0�1 − �xu�x� + �

K�0
eiK�x−u�x��� ,

�A16�

where the last expression is valid for �xu�1, K=2�n /a, and
the continuum field

u�x� = �
0

2�/a dq

2�
eiqx�

j

eiqxj
0
uj �A17�

is valid for x�a. This relabelling process is carefully de-
scribed in Ref. 59, especially Appendix A, and we refer the
interested reader to this work.

Considering the decomposition of the density, the Hamil-
tonian part corresponding to the uncorrelated Gaussian dis-
order Vc�x� with Vc�x�Vc�x��=�c��x−x�� is

Hdis =� dxVc�x���x�

� �0� dxVc�x��1 − �xu�x� + �
K�0

eiK�x−u�x��� .

�A18�

When replicating the Hamiltonian one has

Hdis = −
�c�0

2

2T
�
ab
� dx�1 − �xu

a�x� − �xu
b�x� + �

K�0
eiK�x−ua�x��

+ �
K��0

eiK��x−ub�x�� + �xu
a�x��xu

b�x�

− �xu
a�x� �

K��0

eiK��x−ub�x�� − �xu
b�x� �

K�0
eiK�x−ua�x��
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+ �
K,K��0

e−x�K+K��e−i�Kua�x�+K�ub�x��� . �A19�

In this last expression one should drop constant shift terms
and rapidly oscillating terms. Then, setting K=−K� in this
last expression one has

Hdis = −
�c�0

2

2T
�
ab
� dx��xu

a�x��xu
b�x� + �

K�0
e−iK�ua�x�−ub�x��� .

�A20�
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